Ray, Tom:
Though I cannot expect you to be interested in my little discoveries, I sometimes feel a need to share them with someone, and you have the misfortune to be "it."

While looking to the "asymptotic direction vectors" on the hyperboloid $x^{2}+y^{2}-z^{2}=1$; i.e., to the 2 -vectors that satisfy

$$
(\boldsymbol{a}, \mathbb{H} \boldsymbol{a})=0
$$

where

$$
\mathbb{H}=\left(\begin{array}{cc}
v^{2}-1 & -u v \\
-u v & u^{2}-1
\end{array}\right)
$$

derives from the $2^{\text {nd }}$ fundamental form, I was led to the following "Pythagorean identities"

$$
\begin{aligned}
& \left(v^{2}-1\right)^{2}+\left(u v+\sqrt{u^{2}+v^{2}-1}\right)^{2}=\left(u+v \sqrt{u^{2}+v^{2}-1}\right)^{2} \\
& \left(v^{2}-1\right)^{2}+\left(u v-\sqrt{u^{2}+v^{2}-1}\right)^{2}=\left(u-v \sqrt{u^{2}+v^{2}-1}\right)^{2}
\end{aligned}
$$

In the case $\{u, v\}=\{3,1\}$ the first identity gives $8^{2}+6^{2}=10^{2}$; i.e., the $\{3,4,5\}$ triangle, but when u and v are assigned other integer values the radicals (in every case, so far as I am aware ${ }^{1}$) mess things up. These identities, in other words, do not - and are not intended - to serve like Euclid's

$$
\left(m^{2}-n^{2}\right)^{2}+(2 m n)^{2}=\left(m^{2}+n^{2}\right)^{2}
$$

Another curiosity: $\operatorname{let}^{2} P(x, \tau)=1+3 x \tau-\tau^{3}$. Then

$$
P(x,-\tau)=\tau^{3} \cdot P(x / \tau,-1 / \tau)
$$

which is curiously reminiscent of Jacobi's identity

$$
\vartheta_{3}(z, \tau)=A \cdot \vartheta_{3}(z / \tau,-1 / \tau) \quad \text { where } \quad A=\sqrt{i / \tau} e^{z^{2} / i \pi \tau}
$$

[^0]$$
P(x, h)=Q(x / h, h)=-h^{3} Q(-x, 1 / h)
$$

ADDENDUM: Concerning the "problem that must have been solved centuries ago," let

$$
w(u, v)=\sqrt{u^{2}+v^{2}-1}
$$

By quick Mathematica search $(1 \leqslant u \leqslant v \leqslant 20)$

$$
\begin{aligned}
w(4,7) & =8 \\
w(5,5) & =7 \\
w(6,17) & =18 \\
w(7,11) & =13 \\
w(8,9) & =12 \\
w(9,19) & =21 \\
w(10,15) & =18 \\
w(11,13) & =17 \\
w(13,19) & =23 \\
w(14,17) & =22
\end{aligned}
$$

and trivially $w(1, v)$ is an integer for all v (ditto $w(u, 1)$, not just in the case $u=3$ cited). Reversing u and v typically leads to a different Pythagorean triple.

[^0]: ${ }^{1}$ The issue hinges on finding integer solutions of $u^{2}+v^{2}-1=w^{2}$, a problem that I suspect was solved centuries ago.
 ${ }^{2}$ I have sketched elsewhere the train of thought that led Ahmed Sebbar from the 2 -dimensional theory of unimodular circulant matrices (Pell's problem) to interest in the polynomial $1-2 x h+h^{2}$, and in three dimensions to the polynomial $Q(x, h)=1+3 x h-h^{3}$. The polynomial $P(x, h)$ arises from

